ECON 7010 - Macroeconomics I Fall 2015 Notes for Lecture #10

Today:

• Models of economic fluctuations with money

Overview of what we've done:

II Dynamic Optimization	Theory (core) - Dynamic Programming - existence - solving it	Application (Macro) - Houshold, Firm, Growth
III OG (no uncertainty)	GE	- Foundation of \$ economics
	Perfect foresight	- Macro dynamics
	Welfare theorems	
IV \$: Aggregate Fluctuations	Rational Expectations Equilibrium	- corr(\$,Y)
	(A generalization of perfect foresight)	- nominal vs real sides of economy

\$: Aggregate Fluctuations

- Why is \$ demanded?
 - OG model emphasizes money as a store of value
 - This generalizes a demand for money in equilibrium
- Why do changes in \$ influence real variables (Y, C, etc)?
 - Neutrality of money
 - $\ast\,$ Changes in \$ have $\underline{\rm NO}$ real effects
 - * This is called the "classical dichotomy": can solve for real side of economy separately from the \$ side (DRAW: real and \$ with separating hyperplane)
 - * w/ OG model, we solved for $\{n_t, \rho_t\}_{t=1}^{\infty}$ (the real variables) apart from M (they are independent of the money supply). After solving for that, we went back and solved for $\{p_t\}_{t=1}^{\infty}$ w/ M and n_t sequence. (e.g., see diff equation in model with production no M in it)
 - How to break the neutrality (Classical Dichotomy) result?
 - * Distributional effects (non-proportional transfers) Next week
 - * Imperfect information Next week or 2 weeks
 - * Sticky wages/prices future

\$: Aggregate Fluctuations, the model

- OG model w/ production (same as before)
- Stochastic money supply:
 - $-M_{t+1} = M_t \tilde{x}_{t+1}$, where \tilde{x}_{t+1} is an iid random variable
 - $\Rightarrow lnM_{t+1} = lnM_t + ln\tilde{x}_{t+1}$, so M_{t+1} is also a random variable

- DRAW out time line: period t starts, choice n_t , sell output for $p_t n_t$, period t + 1 starts, x_{t+1} determined, trade money for consumption c_{t+1} , die
- Proportional transfers
 - Know distribution of x_t
 - Note that monetary policy affects decisions in two ways
 - 1. Realizations of x_t
 - 2. Distribution of x_t
- Optimization of a representative, young generation t agent (a price taker):
 - <u>Preferences:</u> $u(c_{t+1}) g(n_t)$
 - Budget constraint: $c_{t+1} = \frac{p_t n_t x_{t+1}}{p_{t+1}} = \rho_t n_t x_{t+1}$, proportional transfers because shock to money supply is proportional to the money holdings of agent
 - Problem is: $\max_{n_t} E_{(x_t, p_{t+1}|M_t, p_t)} u\left(\frac{p_t n_t x_{t+1}}{p_{t+1}}\right) g(n_t)$
 - * Compute expectation w.r.t. x_{t+1} using known distribution
 - * What is the distribution of p_{t+1} ?
 - $\cdot\,$ Determined in the Rational Expectations Equilibrium
 - $\cdot\,$ Lots of them they depend upon how you define the REE
 - $\cdot\,$ Rational expectations equilibrium:
 - $\cdot\,$ Kind of a deep concept more than individuals right on average
 - It's an equilibrium concept!
 - \cdot Idea is: Individuals beliefs about the distribution of endogenous variables are consistent with the actions they take given these beliefs
 - · That is, beliefs induce behavior that is consistent with beliefs

Applications of REE

- 1. Stochastic money supply: $M_{t+1} = M_t x_{t+1}$
- 2. Technology shock: $y_t = \tilde{A}_t f(n_t)$, where \tilde{A}_t is a random shock
- 3. Tastes: $u(c_{t+1}) \tilde{\gamma}_t g(n_t)$, where $\tilde{\gamma}_t$ is a random taste shock to disutility of labor
- 4. Population shock: \tilde{N}_t